Skip to main content
Log in

Solvent-, ion- and pH-specific swelling of poly(2-acrylamido-2-methylpropane sulfonic acid) superabsorbing gels

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Homopolymer hydrogel of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and its nanocomposite counterpart were prepared to study their swelling properties. The hydrogels showed ability to absorb and retain electrolytes as well as binary mixtures of water and organic solvents (i.e., methanol, ethanol, acetone, ethylene glycol (EG), polyethylene glycol, N-methyl-2-pyrrolidone (NMP), and dimethylsulfoxide (DMSO). The nanocomposite gel exhibited lower swelling in all solvent compositions in comparison with non-composite gel. Unlike conventional acrylic acid-based hydrogels, the poly(AMPS) gels showed superabsorbing capacity in pure ethanol, methanol, EG, DMSO and NMP. Meanwhile, swelling capacity of poly(AMPS) hydrogel in DMSO-water mixtures was surprisingly found to be even higher than that in water. This extraordinary superswelling behavior was explained based on the interactions involved in solvation as well as the solubility parameters. The gels showed pH-independent superabsorbency in a wide range of pH (3–11). Saline-induced swelling transitions were also investigated and the ionic interactions were confirmed by FTIR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley-VCH, New York Chap. 1–7

    Google Scholar 

  2. Brannon-Peppas L, Harland RS (1990) Absorbent polymer technology. Elsevier, Amsterdam Chap. 1–4

    Google Scholar 

  3. Andrade JD (1976) Hydrogels for medical and related applications, ACS symp. Series, 31. American Chemical Society, Washington DC, p 1

    Book  Google Scholar 

  4. Po R (1994) J Macromol Sci- Rev Macromol Chem Phys C34:607

    CAS  Google Scholar 

  5. Buchholz FL, Peppas NA (1994) Superabsorbent polymers science and technology, ACS symposium Series, 573. American Chemical society, Washington, DC Chap. 2, 7, 8 and 9

    Book  Google Scholar 

  6. Zohuriaan-Mehr MJ, Kabiri K (2008) Iran. Polym J 17:451

    CAS  Google Scholar 

  7. Lee WF, Chen YC (2004) J Appl Polym Sci 91:2934. doi:10.1002/app.13499

    Article  CAS  Google Scholar 

  8. Lee WF, Jou LL (2004) J Appl Polym Sci 94:74. doi:10.1002/app.20730

    Article  CAS  Google Scholar 

  9. Lee WF, Fu YT (2003) J Appl Polym Sci 89:3652. doi:10.1002/app.12624

    Article  CAS  Google Scholar 

  10. Lee WF, Yang LG (2004) J Appl Polym Sci 92:3422. doi:10.1002/app.20370

    Article  CAS  Google Scholar 

  11. Yissar VP, Andrew RG, Shipway N, Bourekno T, Willner I (2001) Adv Mater 13:1320. doi:10.1002/1521-4095(200109)13:17<1320::AID-ADMA1320>3.0.CO;2-8

    Article  Google Scholar 

  12. Kim JH, Lee TR (2004) Chem Mater 16:3647. doi:10.1021/cm049764u

    Article  CAS  Google Scholar 

  13. Chen W, Yuan Y, Yan L (2000) Mater Res Bull 35:807. doi:10.1016/S0025-5408(00)00266-X

    Article  CAS  Google Scholar 

  14. Tanaka T (1979) Polymer (Guildf) 20:1404. doi:10.1016/0032-3861(79)90281-7

    Article  CAS  Google Scholar 

  15. Li A, Wang A, Chen J (2004) J Appl Polym Sci 94:1869. doi:10.1002/app.20850

    Article  CAS  Google Scholar 

  16. Caykara T, Dogmus M (2004) Eur Polym J 40:2605. doi:10.1016/j.eurpolymj.2004.06.024

    Article  CAS  Google Scholar 

  17. Nisha CK, Dhara D, Chatterji PR (2000) J. Macromol Sci-Pure Appl Chem A37:1447. doi:10.1081/MA-100101164

    Article  CAS  Google Scholar 

  18. Kiritoshi Y, Ishihara K (2003) Sci Technol Adv Mater 4:93. doi:10.1016/S1468-6996(03)00010-X

    Article  CAS  Google Scholar 

  19. Richter A, Howitz S, Kuckling D, Arndt KF (2004) Sens Actuators B99:451

    CAS  Google Scholar 

  20. Muta H, Kawauchi S, Satoh M (2003) Colloid Polym Sci 282:149. doi:10.1007/s00396-003-0922-1

    Article  CAS  Google Scholar 

  21. Muta H, Miwa M, Satoh M (2001) Polymer (Guildf) 42:6313. doi:10.1016/S0032-3861(01)00098-2

    Article  CAS  Google Scholar 

  22. Muta H, Ishida K, Tamaki E, Satoh M (2002) Polymer (Guildf) 43:103. doi:10.1016/S0032-3861(01)00611-5

    Article  CAS  Google Scholar 

  23. Yasumoto N, Hata Y, Satoh M (2004) Polym Int 53:766. doi:10.1002/pi.1443

    Article  CAS  Google Scholar 

  24. Nishiyama Y, Satoh M (2000) J Polym Sci Part B. Polym Phys 38:2791. doi:10.1002/1099-0488(20001101)38:21<2791::AID-POLB80>3.0.CO;2-1

    Article  CAS  Google Scholar 

  25. Fukunaga Y, Hayashi M, Satoh M (2007) J Polym Sci Part B. Polym Phys 45:1166. doi:10.1002/polb.21141

    Article  CAS  Google Scholar 

  26. Haraguchi K, Takehisa T (2002) Adv Mater 14:1120. doi:10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9

    Article  CAS  Google Scholar 

  27. Lee WF, Chen YC (2006) Eur Polym J 42:1634. doi:10.1016/j.eurpolymj.2006.01.014

    Article  CAS  Google Scholar 

  28. Durmaz S, Okay O (2000) Polymer (Guildf) 41:3693. doi:10.1016/S0032-3861(99)00558-3

    Article  CAS  Google Scholar 

  29. Murat M, Okay O (2005) Polymer (Guildf) 46:8119. doi:10.1016/j.polymer.2005.06.102

    Article  Google Scholar 

  30. Wang KH, Choi MH, Koo CM, Choi YS, Chung IJ (2001) Polymer (Guildf) 42:9819. doi:10.1016/S0032-3861(01)00509-2

    Article  CAS  Google Scholar 

  31. El-Hag AA, Abd El Rehim HA, Hegazy EA, Ghobashy MM (2006) Radiat Phys Chem 75:1041. doi:10.1016/j.radphyschem.2005.05.022

    Article  Google Scholar 

  32. Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ (2008) J Appl Polym Sci (submitted).

  33. Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ (2008) J Appl Polym Sci 110:3420. doi:10.1002/app.28148

    Article  CAS  Google Scholar 

  34. Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ (2007) Iran. Polym J 16:147

    CAS  Google Scholar 

  35. Rodehed C, Ranby B (1986) Polymer (Guildf) 27:313. doi:10.1016/0032-3861(86)90346-0

    Article  CAS  Google Scholar 

  36. Chen J, Shen J (2000) J Appl Polym Sci 75:1331. doi:10.1002/(SICI)1097-4628(20000314)75:11<1331::AID-APP2>3.0.CO;2-R

    Article  CAS  Google Scholar 

  37. Çaykara U, Özyürek C, Kantolu Ö, Güven O (2002) J Polym Sci Part Polym Chem 40:1995

    Google Scholar 

  38. Zohuriaan-Mehr MJ, Motazedi Z, Kabiri K, Ershad-Langroudi A, Allahdadi I (2006) J Appl Polym Sci 102:5667. doi:10.1002/app.25033

    Article  CAS  Google Scholar 

  39. Champ S, Xue W, Huglin MB (2000) Macromol Chem Phys 201:931. doi:10.1002/1521-3935(20000601)201:9<931::AID-MACP931>3.0.CO;2-#

    Article  CAS  Google Scholar 

  40. Tong Z, Liu X (1994) Macromolecules 27:844. doi:10.1021/ma00081a033

    Article  CAS  Google Scholar 

  41. Vaisman II, Berkowitz ML (1992) J Am Chem Soc 114:7889. doi:10.1021/ja00046a038

    Article  CAS  Google Scholar 

  42. Kirchner B, Reiher M (2002) J Am Chem Soc 124:6206. doi:10.1021/ja017703g

    Article  CAS  Google Scholar 

  43. Shin DN, Wijnen JW, Engberts JBFN, Wakisaka A (2001) J Phys Chem B 105:6759. doi:10.1021/jp0111517

    Article  CAS  Google Scholar 

  44. Krishner B, Hutter J (2002) Chem Phys Lett 364:497. doi:10.1016/S0009-2614(02)01377-5

    Article  Google Scholar 

  45. Alia JM, Edwards HGM, Kiernan BM (2004) Spectrochemica Acta Part A 60:1533. doi:10.1016/j.saa.2003.08.016

    Article  Google Scholar 

  46. Grulke EA (1999) In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook, 4th edn. Wiley, New York, pp VII/675–VII/697

    Google Scholar 

  47. Scild HG, Muthkumar M, Tirrell DA (1991) Macromolecules 24:948. doi:10.1021/ma00004a022

    Article  Google Scholar 

  48. Atta AM (2002) Polym Adv Technol 13:567. doi:10.1002/pat.226

    Article  CAS  Google Scholar 

  49. Atta AM, Arndt KF (2001) Polym Int 50:1360. doi:10.1002/pi.790

    Article  CAS  Google Scholar 

  50. Vasheghani-Farahani E, Vera JH, Cooper DG, Weber ME (1990) Ind Eng Chem Res 29:554. doi:10.1021/ie00100a010

    Article  CAS  Google Scholar 

  51. Qi X, Liu M, Chen Z, Liang R (2007) Polym Adv Technol 18:184. doi:10.1002/pat.847

    Article  CAS  Google Scholar 

  52. Horkay F, Tasaki I, Basser PJ (2000) Biomacromolecules 1:84. doi:10.1021/bm9905031

    Article  CAS  Google Scholar 

  53. Kabiri K, Faraji-Dana S, Zohuriaan-Mehr MJ (2005) Polym Adv Technol 16:659. doi:10.1002/pat.637

    Article  CAS  Google Scholar 

  54. Kiatkamjornwong S, Phunchareon P (1999) J Appl Polym Sci 72:1349. doi:10.1002/(SICI)1097-4628(19990606)72:10<1349::AID-APP16>3.0.CO;2-K

    Article  CAS  Google Scholar 

  55. Zhang C, Easteal AJ (2003) J Appl Polym Sci 88:2563. doi:10.1002/app.12095

    Article  CAS  Google Scholar 

  56. Velada JL, Liu Y, Huglin MB (1998) Macromol Chem Phys 199:1127. doi:10.1002/(SICI)1521-3935(19980601)199:6<1127::AID-MACP1127>3.0.CO;2-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Zohuriaan-Mehr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabiri, K., Zohuriaan-Mehr, M.J., Mirzadeh, H. et al. Solvent-, ion- and pH-specific swelling of poly(2-acrylamido-2-methylpropane sulfonic acid) superabsorbing gels. J Polym Res 17, 203–212 (2010). https://doi.org/10.1007/s10965-009-9306-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9306-7

Keywords

Navigation